Abstract

Due to the unique optical properties, colloidal quantum dots (QDs) are excellent candidates for developing next-generation display and solid-state lighting technologies. However, some factors including photoluminescence blinking and Forster resonance energy transfer (FRET) still affect their practical applications. Herein, a series of ZnCdSe-based core/shell QDs with low optical polydispersity have been successfully synthesized by a “low-temperature injection and high-temperature growth” precisely controlled method. The alloyed ZnCdSe core with a certain ratio of Cd and Zn was presynthesized first. Followed by accurate ZnS shell growth, the as-synthesized core/shell QDs are nonblinking with the nonblinking threshold volume of ∼137 nm3. The PL decay dynamics are all single-exponential for both QDs in solutions and close-packed solid films when ZnS shell thickness varying from 2 to 20 monolayers. FRET can be effectively suppressed after growing 10 monolayers of ZnS shell. All of these superb characteristics...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.