Abstract

In this study, statistical glyco-dithiocarbamate (DTC) copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequently used to prepare glyconanoparticles and conjugated glyconanoparticles with the anticancer drug, gold(I) triphenylphosphine. These glyconanoparticles and the corresponding conjugates were then tested for their in vitro cytotoxicity in both normal and cancer cell lines using Neutral Red assay. The glyconanoparticles and their Au(I)PPh3 conjugates were all active against MCF7 and HepG2 cells, but galactose-functionalized glyconanoparticles {P(GMA-EDAdtc(AuPPh3)-st-LAEMA)AuNP} were found to be the most cytotoxic to HepG2 cells (IC50 ∼ 4.13 ± 0.73 μg/mL). The p(GMA-EDAdtc(AuPPh3)-st-LAEMA)AuNP was found to be a 4-fold more potent antitumor agent in HepG2 cells, and the overexpressed asialoglycoprotein (ASGPR) receptors revealed to play an important role in the cytotoxicity, presumably by the enhanced uptake. In addition, the glyconanoparticles Au(I) conjugates are found to be significantly more toxic as compared to the standard chemotherapeutic reagents such as cisplatin and cytarabine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.