Abstract

In the present study, two novel silicate glass-ceramics having chemical composition 38SiO2–41CaO–6P2O5–([Formula: see text])Na2O–[Formula: see text]CaF2 ([Formula: see text], 0.43 mol%) were synthesized. These glass derivatives were subjected to stimulated body fluid for 24 days in SBF under static condition at [Formula: see text]C in order to evaluate the bioactive properties of specimens. The antibacterial activity of glass ceramics against three pathogenic bacteria was determined using the modified Kirby Bauer method. It was found that the antibacterial activity primarily depends on the dissolution rate; faster release of ions caused rapid increase in the pH of the solution. Antibacterial properties were found to be strongly affected by changes in the pH of supernatant. The in vitro bioactivity assays showed that both glass derivatives were capable of bonding with bone and secondly effectively inhibit bacteria. However, the glass ceramic without CaF2 (B2) showed high dissolution rate, better bioactive ability and stronger antibacterial efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.