Abstract

Curcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential. The GNPCs showed an average hydrodynamic diameter of 58 nm and a PDI of 0.336. The synthesised and fully characterised GNPCs showed ex-vivo hemolysis value of ≤ 1.74 % and serum stability of ≥ 95 % over 24 h. Using in-vivo non-invasive (SPECT and optical Imaging), prolonged circulation and enhanced bioavailability of GNPCs were seen. The biodistribution studies after radiolabelling GNPCs with 99 mTc complemented the optical imaging. The SPECT images showed higher uptake of the GNPCs at the tumour site, viz the contralateral muscle and the native Curcumin, resulting in a high target-to-non-target ratio that differentiated the tumour sufficiently and enhanced the diagnostics. Other organs also accumulate radiolabeled GNPCs in systemic circulation; bio dosimetry is performed. It was found that the dose received by the different organs was safe for use, and the in-vivo toxicity studies in rats indicated negligible toxicity over 30 days. The tumour growth was also reduced in mice models treated with GNPCs compared to the control. These significant findings demonstrate that GNPC shows synergistic activity in vivo, indicating its ability as a green diagnostic probe that has the potential for therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call