Abstract

Colloidal clusters of magnetic iron oxide nanocrystals (MIONs), particularly in the condensed pattern (co-CNCs), have emerged as new superstructures to improve further the performance of MIONs in applications pertaining to magnetic manipulation (drug delivery) and magnetic resonance imaging (MRI). Exploitation of the advantages they represent and their establishment in the area of nanomedicine demands a particular set of assets. The present work describes the development and evaluation of MION-based co-CNCs featuring for the first time such assets: High magnetization, as well as magnetic content and moment, high relaxivities (r2 = 400 and r2*=905s−1mMFe−1) and intrinsic loss power (2.3 nH m2 kgFe−1) are combined with unprecedented colloidal stability and structural integrity, stealth and drug-loading properties. The reported nanoconstructs are endowed with additional important features such as cost-effective synthesis and storage, prolonged self-life and biocompatibility. It is finally showcased with in vivo multispectral optoacoustic tomography how these properties culminate in a system suitable for targeting breast cancer and for forceful in vivo manipulation with low magnetic field gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.