Abstract

IntroductionThe limitations of [18F]fluorodeoxyglucose ([18F]FDG), including producing false-positive or -negative results, low image contrast in brain tumor diagnosis and poor differentiation of tumor and inflammatory, necessitate the development of new radiopharmaceuticals. In the present study, a novel [18F]fluoroglycoconjugate tracer, [18F]FDGly-NH-Phe, for tumor metabolism imaging was prepared and evaluated. Methods[18F]FDGly-NH-Phe was prepared by condensing [18F]FDG with L-4-aminophenylalanine in an acidic condition, and purified with semi-preparative-high performance liquid chromatography (HPLC). The in vitro stability study was conducted in phosphate-buffered saline (PBS, pH 4.0–9.18) at room temperature (RT) and in fetal bovine serum (FBS) at 37 °C. The preliminary cellular uptake studies were performed using Hep-2 cell. The bio-distribution studies, PET/CT imaging and metabolism studies were performed and compared with [18F]FDG on ICR or BALB/c nude model mice. Results[18F]FDGly-NH-Phe was derived from a direct condensation of [18F]FDG with L-4-aminophenylalanine with high stability in FBS and PBS (pH of 6.5–9.18). In vitro cell experiments showed that [18F]FDGly-NH-Phe uptake in Hep-2 cells was primarily transported through amino acid transporters including Na+-dependent A system, ASC system, and system B0,+ system. The bio-distribution of [18F]FDGly-NH-Phe in normal ICR mice showed faster blood radioactivity clearance, and lower uptake in brain and heart than [18F]FDG. The performance of PET/CT imaging for [18F]FDGly-NH-Phe in the mice model manifested excellent tumor visualization, high tumor-to-background ratios, and low accumulation in inflammatory lesions. Metabolism studies for [18F]FDGly-NH-Phe indicated high in vivo stability in plasma and urine and decomposition into [18F]FDG in the tumor microenvironment. ConclusionThe results demonstrated that [18F]FDGly-NH-Phe as a novel amino acid PET tracer showed the capability to differentiate tumor from inflammation, and the potentials for future clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call