Abstract

Novel porous nanocomposite (AC/NC/TGO) was successfully synthesized through the composition of activated carbon, nanoclay and graphene oxide as a Pb(II) adsorbent for the treatment of contaminated aqueous environment. The physicochemical properties and morphology of AC/NC/TGO were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. Results showed Pb(II) adsorption on the AC/NC/TGO was rapid in the first 20 min and reached equilibrium in 40 min. Kinetic studies showed significant fit to the pseudo second order kinetic model (R2 ≥ 0.9965) giving an equilibrium rate constant (K2) of 0.0017 g mg-1 min-1 for Pb(II) loaded. The experimental adsorption data were better fitted with the Langmuir isotherm model than with the Freundlich isotherm model. Prepared nanocomposite exhibited high values of Brunauer-Emmett-Teller (BET) surface area of 1,296 m2 g-1 and total pore volume of 1.01 cm3 g-1. Maximum adsorption capacity (Qmax = 208 mg g-1) and a relatively high adsorption rate was achieved at pH 5.0 using an adsorbent dose of 0.5 g L-1 and an initial lead concentration of 50 mg L-1. High adsorption capacity, reusability, fast kinetics and simple synthesis method indicate that prepared nanocomposite can be suggested as a high-performance adsorbent for Pb(II) removal from polluted water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.