Abstract

Computer modeling approaches to identify new inhibitors are essentially a very sophisticated and efficient way to design drugs. In this study, a bivalent nonpeptide intergrin alpha(v)beta(3) antagonist (bivalent IA) has been synthesized on the basis of an in silico rational design approach. A near-infrared (NIR) fluorescent imaging probe has been developed from this bivalent compound. In vitro binding assays have shown that the bivalent IA (IC(50) = 0.40 +/- 0.11 nM) exhibited improved integrin alpha(v)beta(3) affinity in comparison with the monovalent IA (IC(50) = 22.33 +/- 4.51 nM), resulting in an over 50-fold improvement in receptor affinity. NIR imaging probe, bivalent-IA-Cy5.5 conjugate, also demonstrated significantly increased binding affinity (IC(50) = 0.13 +/- 0.02 nM). Fluorescence microscopy studies showed integrin-mediated endocytosis of bivalent-IA-Cy5.5 in U87 cells which was effectively blocked by nonfluorescent bivalent IA. We also demonstrated tumor accumulation of this NIR imaging probe in U87 mouse xenografts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call