Abstract
Mutations in the isocitrate dehydrogenase gene 1 (IDH1) are common in gliomas. Studies suggest that IDH1 mutations are early events in glioma formation and are important drivers of malignant progression. Herein, we report the synthesis and evaluation of a 18F-labeled triazinediamine analogue, [18F]1, as a candidate radiotracer for noninvasive imaging of IDH1 mutations in gliomas by positron emission tomography (PET). In vitro studies revealed good binding inhibition potency and binding affinity for [18F]1 in IDH1 mutant glioma cell lines, with a half-maximal inhibitory concentration value (IC50) of 54 nM and an equilibrium dissociation constant (Kd) of 40 nM. In vivo studies using mutant IDH1 glioma xenografts showed good tumor uptake of [18F]1 and specific inhibition by the unlabeled 1, but also elevated radioactivity uptake in the bone, suggesting significant defluorination. The results support further optimization of the triazinediamine scaffold to develop a more stable and potent 18F-labeled analogue for PET imaging of IDH1 mutations in gliomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.