Abstract
Free fatty acid receptor 4 (FFA4) has been recognized as an attractive target in metabolic diseases. To find potent and selective FFA4 agonist, 28 compounds of 3-(4-(phenoxymethyl)phenyl)propanoic acid and N-phenylbenzenesulfonamide derivatives were designed and synthesized, featuring OC and SO2-N linkage. For the OC linkage compounds, 1g showed the most potent FFA4 agonistic activity with a pEC50 of 5.81 ± 0.04 and exhibited at least 64-fold selectivity against FFA1. For SO2-N linkage agonists, 2m had a pEC50 of 5.66 ± 0.04 and displayed>46-fold selectivity against FFA1. Among these two series of compounds, 1g was the most potent agonist at FFA4 and the best selectivity against FFA1, demonstrated by docking simulation. Moreover, 1g showed receptor selectivity on other seven GPCRs. In anti-diabetic evaluation, 1g dose-dependently reduced blood glucose, which was better than a clinical phase III drug TAK875. This study provides guidance for FFA4 ligand design and drug optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.