Abstract

Heterojunction is considered as very promising material for various applications in photocatalysis. Herein, an efficient heterojunction photocatalyst N/Zn–TiO2@NH2-MIL-125 was successfully synthesized for photo-degradation organic oxidation by biological-templated method. The electron–hole pairs can be separated in space more efficiently because of heterojunction structure. Systematical analyses of spectroscopy and microscopy measurements revealed that N/Zn–TiO2@NH2-MIL-125 heterojunction materials exhibited hierarchical porous structure with high surface area of 366.02 m2 g−1 and outstanding optical properties. Photocatalytic activity was investigated by degradating of rhodamine B (1000 µM) under visible-light irradiation. The N/Zn–TiO2@NH2-MIL-125 showed enhanced photocatalytic activity for RhB degradation, which is respectively about 1.81 and 1.97 times higher than that of the pristine N/Zn–TiO2 and NH2-MIL-125. Various advanced spectroscopic characterizations were applied including photoluminescence, Mott–Schottky curves and electrochemical impedance spectroscopy. A possible mechanism of enhanced photocatalytic oxidation activity for N/Zn–TiO2@NH2-MIL-125 composite under visible light irradiation was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.