Abstract

α-Fe 2O 3/ZnO heteronanostructures were synthesized via a three-step process. XRD, SEM, TEM and EDS analyses indicated that their diameters and lengths were ∼40 nm and 0.35–1.2 μm, respectively, in which the largest thickness of ZnO shells was about 10 nm. The heteronanostructures exhibited a dramatic improvement in ethanol sensing characteristics compared to the pure α-Fe 2O 3 nanorods. Based on the space-charge layer model, such enhanced sensing properties were attributed to small thickness of ZnO shell. Our results demonstrate that One-dimensional (1D) metal oxide heteronanostructures, whose shell thickness is comparable to Debye length, are very promising materials for fabricating gas sensors with good performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.