Abstract

The thermal precursor Tp′Rh[P(OMe)3](Me)H was used to generate the active [Tp′Rh[P(OMe)3]] fragment, which activates C–H bonds of various hydrocarbons to form products of the type Tp′Rh[P(OMe)3](R)H (Tp′ = tris-(3,5-dimethylpyrazolyl)borate). Only one single activation product was observed in each case. The structures of Tp′Rh[P(OMe)3](R)X (X = H, Br, Cl) have been characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. The kinetics of reductive elimination of RH from Tp′Rh[P(OMe)3](R)H as well as competition experiments between substrates allow measurement of the Rh–C bond strengths relative to the Rh–Ph bond strength. Two separate linear correlations of the Rh–C bond energies versus H–C bond energies were found based on whether the alkyl group is α-substituted or not. While the correlation for α-substituted substrates gives a slope of 1.45, smaller than the slope (1.55) for unsubstituted hydrocarbons, the Rh–C bond energies of the former group are higher by ∼7 kcal mol−1. In comparison with the analogous [Tp′Rh(PMe3)] and [Tp′Rh(CNneopentyl)] systems, replacing the spectator ligand with a more electronic donating group slightly increases metal–carbon bond strengths as the trend in slopes of the correlations follows an order of CNneopentyl < P(OMe)3 ≤ PMe3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.