Abstract

A series of polycrystalline Sn1−xNaxSe with x = 0.00, 0.02, 0.04 and 0.10 were fabricated using hydrothermal synthesis followed by evacuated-and-encapsulated sintering. The as-fabricated materials were characterized using powder x-ray diffraction and electronic transport. The resulting materials were single phase. Partial replacement of Na for Sn leads to a simultaneous increase of electrical conductivity and thermopower. The x = 0.04 sample has the largest power factor among the series of the samples. Upon partial replacement of Na for Sn, the power factor is significantly enhanced as compared to the undoped SnSe. The maximum ZT value of ∼0.4 was achieved for Sn0.96Na0.04Se at 550 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.