Abstract

We report on the synthesis of novel nanoporous Pd–Ag electrocatalysts using a facile hydrothermal method where the portion of Ag was varied from 0 to 40%. Scanning electron microscopy (SEM) was used to examine the morphologies of the prepared nanoporous materials. Energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) were used to directly and indirectly characterize the composition of the formed Pd–Ag nanostructures. X-ray diffraction (XRD) analysis confirmed that the formed Pd–Ag nanomaterials were alloys with a face-centered cubic structure. Electrochemical methods were used to study the capacity and kinetics of hydrogen sorption into the nanoporous Pd and Pd–Ag alloys. The nanoporous Pd–Ag alloy with 20% silver possesses the highest capacity for the α phase hydrogen sorption, which is over 4 times higher than the pure nanoporous Pd. The combination of the enhanced α phase hydrogen sorption capacity and diminishing of the α- and β-phase transition makes the nanoporous Pd–Ag alloys promising for hydrogen selective membranes and hydrogen dissociation catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.