Abstract
The constant increase in the utilization of lithium-ion batteries (LIBs) in various field applications, including electrical vehicles and electronic devices, has led researchers to focus on their multiple path developments to obtain new electrode materials. The practical development of these electrode materials, based on organic and inorganic moieties, is challenging for various groups of LIB scientists. The concept of organic electrode materials is highly competitive with inorganic electrode materials because of the accessibility of more active sites with structural diversity, high energy and power density, environmental friendliness potential sustainability, and low cost. Herein, 1,1’-binaphthyl-2,2’-diol (BINOL) is investigated as an organic electrode material that contains two hydroxyl groups that act as active centers. The oxidative coupling process is employed to synthesize BINOL and so obtained product was characterized by using FT-IR, 1H-NMR and MASS techniques. The electrochemical investigations were carried out using sat. Li2SO4 electrolytic medium at three-electrode cell system. The Cyclic voltammetry (CV) has provided information on the anodic behavior of the material and its stability studied at different scan rates. The battery performance of the cell BINOL | Sat. Li2SO4 | LiMn2O4 by galvanostatic charge-discharge potential limit (GCPL) shows 197/171mAhg−1 specific capacity and 90% columbic efficiency. The electrochemical kinetic obtained by potentiostatic electrochemical impedance spectroscopy (PEIS) shows a semi-infinite diffusion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.