Abstract

Carbon-coated Li2.7Ti2(PO4)3, a new mixed-valence titanium(III/IV) phosphate, is synthesized by the microwave-assisted sol-gel method using citric acid as both a chelating reagent and carbon source for the cathode material in lithium-ion batteries. The contents of Li, Ti and P are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and ion chromatography (IC). The microstructure, composition, and electrochemical performance of Li2.7Ti2(PO4)3/C samples are characterized by X-ray Diffraction (XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope (SEM) and cyclic voltammetry (CV). The Li2.7Ti2(PO4)3/C sample exhibits a high initial discharge capacity of 123.6mAhg−1 at 0.1C and outstanding cycling ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call