Abstract

The uniform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of calcination temperature and transition metal contents on the structure and electrochemical properties of the Li-Ni-Co-Mn-O were systemically studied. The results of XRD and electrochemical performance measurement show that the ideal preparation conditions were to prepare the Li(Ni3/8Co3/8Mn2/8)O2 cathode material calcined at 900°C for 10 h. The well-ordered Li(Ni3/8Co3/8Mn2/8)O2 synthesized under the optimal conditions has the I 003/I 104 ratio of 1.25 and the R value of 0.48 and delivers the initial discharge capacity of 172.9 mA·h·g−1, the discharge capacity of 166.2 mA·h·g−1 after 20 cycles at 0.2C rate, and the impedance of 558 Ω after the first cycle. The decrease of Ni content results in the decrease of discharge capacity and the bad cycling performance of the Li-Ni-Co-Mn-O cathode materials, but the decreases of Mn content and Co content to a certain extent can improve the electrochemical properties of the Li-Ni-Co-Mn-O cathode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call