Abstract

In this study, we utilized nano-sized Co3O4 and reduced graphene oxides (rGOs) as composite anode materials for Li-ion batteries. The Co3O4/C composite anode was derived from ZIF67 (Zeolitic Imidazolate Framework-67) and was wrapped in rGOs through precipitation. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to identify the crystal structure, phase purity, and surface morphology of the composite. The composition-optimized Co3O4/rGO/C composite anode exhibited a reversible capacity of 1326 mAh/g in the first cycle, which was higher than that of the Co3O4/C composite anode with a capacity of 900 mAh/g at a current density of 200 mA/g. Moreover, after 80 cycles, Co3O4/rGO/C maintained a capacity of 1251 mAh/g at the same current density, which was also higher than the bare Co3O4/C composite (595 mAh/g). Additionally, the Co3O4/rGO/C composite exhibited a good capacity retention of 98% after 90 cycles, indicating its excellent cycling stability and high capacity. Therefore, the Co3O4/rGO/C electrode has great potential as a promising anode material for Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.