Abstract
A facile method was developed to synthesize amorphous carbon coated nano-sized silicon and graphite by using glucose or pitch as organic carbon source, nano-sized silicon particles were uniformly coated onto the artificial graphite by combined ball milling and spray drying pyrolysis, and the effect of binder types, binder amounts on the precursor morphology, feed rate and spray pressure on the electrochemical performance were investigated in detail. The partial size, surface morphology and electrochemical performances of the as-synthesized powders were analyzed by particulate size description analyzer (PSDA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and constant current charge/discharge tools. It is found that, citric acid and binder are important for improving the free-aggregation of nano-sized silicon and the morphologyof combined silicon and graphite. Therefore, under the optimal experimental conditions, amorphous carbon from pitch coated nano-sized silicon and graphite composite anodes exhibits much higher electrochemical performance. It can deliver the first discharge specific capacity of 796.3mA·h/g at a current density of 100 mA/g, as well as 85% of initial coulombic efficiency. Additionally, the discharge specific capacity retains 724.9mA·h/g, and the discharge capacity retention of a half cell system is 91% after 50 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.