Abstract

Microporous carbon was prepared using a novel procedure based on a zinc(Ⅱ)-organic coordination polymer. The polymer was prepared through the coordination interaction of zinc ions with tartaric acid, and then it was introduced into the open networks of resorcinol/formaldehyde (R/F) resol using hydrogen-bonding interactions. The R/F resol and zinc-organic coordination compound system copolymerized to produce an R/F and zinc-organic coordination copolymer. The copolymer was then heat-treated at 950℃ to decompose and evaporate zinc to fabricate microporous carbon materials. The carbon materials possessed relatively regular large micropores, with a specific surface area of up to 1260 m2·g-1 and a total pore volume of 0.63 cm3 ·g-1 . The resultant microporous carbon materials were used as supercapacitor electrodes, exhibiting an equivalent series resistance of 0.46 Ω, and ideal capacitive behavior with a rectangular shape in cyclic voltammograms. Galvanostatic charge/discharge measurements of the carbon materials gave a specific capacitance of 196 F ·g-1 at a current density of 1A·g-1 and 137F·g-1 at a large current density of 10A·g-1 . A high retention of 98% was measured for the long-term cycling stability (~1000 cycles) of the mesoporous carbon. Overall, the microporous carbon materials exhibited very good electrochemical performance. This study highlights the potential of well-designed microporous carbon materials as electrodes for diverse supercapacitor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.