Abstract

Li 4Ti 5O 12/C composite anode materials were synthesized by a simple starch sol assisted method using TiO 2-anatase and Li 2CO 3 as raw materials and soluble starch as carbon source. The influences of calcination temperature and starch amounts on the microstructure and electrochemical performance were systematically investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and constant-current charge/discharge cycling tests. The results showed that the Li 4Ti 5O 12/C composite with 10 wt.% starch synthesized at 800 °C for 6 h had homogeneous particle size distribution with an average particle size of 200–300 nm and exhibited the optimal electrochemical performance with specific discharge capacities of 168.5, 160.8, 155.1 and 141.8 mAh g − 1 at 0.2 °C, 1 °C, 2 °C and 5 °C rates, respectively, and satisfactory cycling stability. It could be attributed to the homogeneous ultrafine particles and in situ carbon coating, which enhanced the electronic conductivity and diffusion of lithium ions in the electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call