Abstract

A graphene/NiO and graphene/NiO-MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nano-composites were prepared by simple chemical precipitation followed by thermal annealing and using a chelating agent and Ni and Mn hydroxides on graphene. The graphene/NiO-MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> was pretreated by ultrasonication followed by thermal annealing at 300°C for 2 h. Graphene/MoO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> composites were prepared by a hydrothermal reaction of molybdenum(IV) oxide with sodium sulfide and subsequent ball-milling with graphene. The results of XRD, FE-SEM, and FE-TEM analyses confirmed the presence of NiO, MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , MoO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nanoparticles on the graphene surface. In the properties of anodes in lithium-ion batteries, the discharge capacities of graphene, graphene/NiO (59 wt.%) are about 302 and 856 mAh g <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> at 5000 mA g <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> (5 C), respectively. The cells containing 59 wt.% NiO show the best performance, and the graphene nanocomposite materials have high rate properties that are comparable to some of the good results reported in the literature using NiO. The mole ratios of MoO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> in the synthesized MoO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> powder were found to be approximately 62.3:37.7. The graphene/MoO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> composite anodes showed a high discharge capacity (~974 mAh g <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) after 20 cycles and superior high-rate capability. In the properties of electrode in supercapacitor, the maximum specific capacitance of the graphene/NiO-MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> electrode was 242.15 F g <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> by cyclic voltammetry at a scan rate of 0.2 mV s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> , which was significantly higher than that of a graphene electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call