Abstract
Natural halloysite nanotubes (HNTs) and reduced graphene oxide (RGO) were introduced into the S cathode material to form HNTs/S and RGO@HNTs/S composite electrode to improve the electrochemical performance of Li-S batteries. The effect of acid etching temperature on the morphology and pore structure of HNTs was explored and the morphological characteristics and electrochemical performance of composite electrodes formed by HNTs that after treatment with different acid etching temperatures and RGO were compared. The result shows that the cycling stability and the utilization rate of active substances of the Li-S battery were greatly improved because the pore structure and surface polarity functional groups of HNTs and the introduction of RGO provide a conductive network for insulating sulfur particles. The RGO@HNTs treated by acid treatment at 80 °C (RGO@HNTs-80/S) composite electrode at 0.1 C has an initial capacity of 1134 mAh g−1, the discharge capacity after 50 cycles retains 20.1% higher than the normal S electrode and maintains a specific discharge capacity of 556 mAh g−1 at 1 C. Therefore, RGO and HNTs can effectively improve the initial discharge specific capacity, cycle performance and rate performance of Li-S batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.