Abstract

AbstractA new electrochemical sensing platform based on tetra‐amino cobalt (II) phthalocyanine (TACoPc) ingrained polyaniline (PANI) nanofiber composite (TACoPc/PANI hybrid) has been developed for the selective detection of dopamine. The uniform fibrous network of PANI/TACoPc hybrid was synthesized by a one‐step oxidative polymerization at room temperature. The synthesized nanocomposite was characterized using field emission scanning electron microscopy (FESEM), energy dispersive X‐ray (EDX), fourier transmission infrared spectroscopy (FTIR), raman spectroscopy, X‐ray diffraction (XRD) and UV‐Visible spectroscopy. The electrochemical behavior of the TACoPc/PANI hybrid material was studied by using different electrochemical techniques, including cyclic voltammetry (CV) and chronoamperometry in 0.1 M phosphate buffer solution (PBS) of pH 7 by modifying the glassy carbon electrode (GCE). Due to the synergistic impact of PANI and TACoPc, the suggested altered electrode provided superior catalytic performance for dopamine even in the presence of ascorbic acid. It exhibited a linear reaction with a high sensitivity of 1.212 μA/μM cm−2 and a low detection limit of 0.064 μM over the 20–200 μM concentration range in 0.1 M PBS. One of the commonly faced problems of interference of ascorbic acid and uric acid in the electrochemical detection of dopamine was completely excluded from this modified electrode which led to an increase in the catalytic activity of the material for the detection of dopamine in the presence of ascorbic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call