Abstract

In this paper, a controlled-release system of caffeine as a corrosion inhibitor was obtained by encapsulating it in MCM-41 silica nanoparticles coated with a poly(β-amino ester) (PbAE), a pH-sensible polymer. Encapsulation was verified using Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). The release of caffeine from the nanocontainers was analyzed in electrolytes with pH values of 4, 5, and 7 using UV-Vis, showing a 21% higher release in acidic electrolytes than in neutral electrolytes, corroborating its pH sensitivity. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to determine the inhibition mode and efficiency of the encapsulated and free caffeine. The caffeine released from the nanocontainers showed the highest efficiency, which was 85.19%. These results indicate that these nanocontainers could have potential use in smart anticorrosion coating applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.