Abstract

LiCe x Mn 2− x O 4 ( x = 0.00–0.10) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol–gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 °C. After drying, the gel precursors were ground and heated at 900 °C. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valence state of Mn and Ce in the synthesized materials. The sample exhibited a well defined spinel structure and the lattice parameter linearly increased with increasing the cerium contents in LiCe x Mn 2− x O 4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmittance electron microscopy respectively. Electrochemical properties were characterized for assembled Li/LiCe x Mn 2− x O 4 coin type cells using galvanostatic charge/discharge studies at 0.5C rate and cyclic voltammetry in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s −1. Among them cerium doped spinel LiCe 0.05Mn 1.90O 4 has improved structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.