Abstract
Polypyrrole (PPy)-capped silver nanowire (Ag NW) nanomaterials (core-shell rod-shaped Ag NW@PPy) were synthesized using a one-port suspension polymerization technique. The thickness of the PPy layer on the 50 nm thickness/15 μm length Ag NW was effectively controlled to 10, 40, 50, and 60 nm. Thin films cast from one-dimensional conductive Ag NW@PPy formed a three-dimensional (3D) conductive porous network structure and provided excellent electrochemical performance. The 3D Ag NW@PPy network can significantly reduce the internal resistance of the electrode and maintain structural stability. As a result, a high specific capacitance of 625 F/g at a scan rate of 1 mV/s was obtained from the 3D porous Ag NW@PPy composite film. The cycling performance over a long period exceeding 10,000 cycles was also evaluated. We expect that our core-shell-structured Ag NW@PPy composites and their 3D porous structure network films can be applied as electrochemical materials for the design and manufacturing of supercapacitors and other energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.