Abstract
α-MoO3 nanobelts/carbon nanotubes (CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts /CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/ CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts /CNTs composites can be attributed to the effects of the high conductive CNTs network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.