Abstract

Interaction of a diiron thiolate-bridged complex, [Cp*Fe(μ-η(2):η(4)-bdt)FeCp*] (1) (Cp* = η(5)-C5Me5; bdt = benzene-1,2-dithiolate) with a proton gives an Fe(III)Fe(III) hydride bridged complex, [Cp*Fe(μ-bdt)(μ-H)FeCp*][BF4] (3[BF4]). According to in situ variable temperature (1)H NMR studies, the formation of 3[BF4] was evidenced to occur through a stepwise pathway: protonation occurring at an iron center to produce terminal hydride [Cp*Fe(μ-bdt)(t-H)FeCp*][BF4] (2) and subsequent intramolecular isomerization to bridging hydride 3[BF4]. A one-electron reduction of 3[BF4] by CoCp2 affords a paramagnetic mixed-valent Fe(II)Fe(III) hydride complex, [Cp*Fe(μ-η(2):η(2)-bdt)(μ-H)FeCp*] (4). Further, studies on protonation processes of diruthenium and iron-ruthenium analogues of 1, [Cp*M1(μ-bdt)M2Cp*] (M1 = M2 = Ru, 5; M1 = Fe, M2 = Ru, 8), provide experimental evidence for terminal hydride species at these bdt systems. Importantly, diiron or diruthenium hydride bridged complexes 3[BF4], 7[BF4] and iron-ruthenium heterodinuclear complex 8[PF6] can realize electrocatalytic hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call