Abstract

Compounds of the system Li1+ x M x Ti2– x (PO4)3 (where M=Sc, Al, Fe, Y; x=0.3) were synthesized by a solid-state reaction and studied by X-ray diffraction. The ceramic samples were sintered and investigated by complex impedance spectroscopy in the frequency range 106–1.2×109 Hz in the temperature range 300–600 K. Two relaxation dispersions related to the fast Li+ ion transport in bulk and grain boundaries were found. The activation energies of the bulk conductivity and relaxation frequency were obtained from the slops of Arrhenius plots. The values of the activation energies of the bulk ionic conductivity and relaxation frequency were found to be very similar in all the materials investigated. That can be attributed to the fact that the temperature dependences of the bulk conductivity are caused only by the mobility of the fast Li+ ions, while the number of charge carriers remains constant with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.