Abstract

ABSTRACT The ceramic composite electronic material of (Sn0.8Ti0.2)O2 has been synthesized through a cost-effective solid-state ceramic approach. The crystallographic tetragonal structure from the XRD spectrum, hydrophilic porous structure from SEM micrograph, dielectric, conductivity, and electrical modulus in addition to impedance spectroscopy over an extensive range of temperature and frequency have been elucidated. Hydrophilicity, superior dielectric response with significantly low dielectric loss, and enhanced capacitive behaviour draw the major attraction of this ceramic-based material system. The temperature-dependent conductivity spectrum evinces Arrhenius’s behaviour. The grain and grain boundary effects in the synthesized sample has been displayed through the Nyquist spectrum. The non-Debye type of relaxation mechanism has been established through an electric modulus study. The extensive study sketched out this composite as a potential capacitive electronic component for humidity sensor device applications. The investigated electrical parameters associated with the ceramic composite may enlighten the development of functional electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call