Abstract

Phthalocyanines and their double-decker complexes are interesting in designing rotative molecular machines, which are crucial for the development of molecular motors and gears. This study explores the design and synthesis of three bulky phthalocyanine ligands functionalized at the α-positions with phenothiazine or carbazole fragments, aiming to investigate dynamic rotational motions in these sterically hindered molecular complexes. Homoleptic and heteroleptic double-decker complexes were synthesized through the complexation of these ligands with Ce(IV). Notably, CeIV(Pc2)2 and CeIV(Pc3)2, both homoleptic complexes, exhibited blocked rotational motions even at high temperatures. The heteroleptic CeIV(Pc)(Pc3) complex, designed to lower symmetry, demonstrated switchable rotation along the pseudo-C4 symmetry axis upon heating the solution. Variable-temperature 1H-NMR studies revealed distinct dynamic behaviors in these complexes. This study provides insights into the rotational dynamics of sterically hindered double-decker complexes, paving the way for their use in the field of rotative molecular machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.