Abstract

Sustainable release of drug by utilizing β-cyclodextrin (β-CD) based inclusion complex (IC) is the prime objective of the present work. Herein, polyacrylamide/dextran containing carbon quantum dots (PAM/Dex/CQD) nanocomposite hydrogels are prepared by in situ polymerization of acrylamide. The incorporation of CQD triggers the change in orientation of the PAM/Dex polymeric chains to result the formation of stacked surface morphology of the hydrogel. The average particle size of CQD is found to be 4.13 nm from HRTEM analysis. As-synthesized nanocomposite hydrogel exhibits an optimum swelling ratio of 863 % in aqueous medium. The cytotoxicity study is conducted on HeLa cells by taking up to 2 μM concentration of the prepared nanocomposite hydrogel demonstrate 78 % cell viability. In present study, ciprofloxacin (Cipro) is taken as model drug that achieves release of 64.15 % in 32 h from β-Cipro@PAM/Dex/CQD hydrogels in acidic medium. From theoretical study, release rate constants, R2, Akaike information criterion (AIC) and model selection criterion (MSC) are computed to determine the best fitted kinetics model. Peppas-Sahlin model is the best fitted kinetics model for β-Cipro@PAM/Dex/CQD and concluded that the release of Cipro follows Fickian drug diffusion mechanism in acidic medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call