Abstract
Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R. Three compounds that showed the highest similarity index were selected for synthesis and bioactivity profiling. All main synthesis products as well as the isolated intermediates, were properly characterized. The physico-chemical analyses were performed using HRESIMS, GC/MS, LC/MS with UV-Vis detection, and FTIR, 1H NMR and 13C NMR spectroscopy. Binding to D1 and D2 receptors and inhibition of dopamine reuptake via dopamine transporter were measured for the synthesized analogues of DHX and SKF 38393.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.