Abstract

Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1'-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1'-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1'-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1'-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1'-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1'-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1'-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1'-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.