Abstract

Type IV collagen is a major protein in basement membranes surrounding and supporting skeletal muscle cells. In the present study, we tested the hypotheses that immobilization down-regulates synthesis and up-regulates degradation of type IV collagen in skeletal muscle. mRNA level and concentration of type IV collagen as well as mRNA levels and activities of proteins involved in its degradation were analysed from soleus (SOL), gastrocnemius (GAS) and extensor digitorum longus muscles after immobilization in shortened and lengthened positions for 1, 3 and 7 days. Following immobilization, type IV collagen mRNA level was decreased in SOL and GAS suggesting down-regulated synthesis of this protein. The mRNA level and activity of matrix metalloproteinase-2 (proMMP-2) were increased in all muscles, while the activity of tissue inhibitor of metalloproteinase-2 was decreased in SOL and GAS. These findings reflect an increased capacity for degradation of type IV collagen. As a consequence of decreased synthesis/degradation ratio immobilization reduced the concentration of type IV collagen in all muscles. The regulation of type IV collagen through synthesis and/or degradation seems, however, to be muscle specific. Immobilization in lengthened position seems to delay and partly decrease the net degradation of type IV collagen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call