Abstract

Polyphosphate kinase 1 (Ppk1) generates polyphosphates (polyPs) by catalyzing phosphate transfer from ATP. In the presence of ATP, Myxococcus xanthus Ppk1 showed the highest activity with polyP60-70 but also showed high activity with orthophosphate and pyrophosphate. Ppk1 synthesizes long-chain polyPs with >1000 phosphate residues from orthophosphate or pyrophosphate present in high concentrations, suggesting that in M. xanthus, Ppk1 uses intracellular ortho/pyrophosphate as an initial primer for polyP production. During M. xanthus starvation-induced development, the specific activity of Ppk1 peaked at 12h (300-800nmol/min/mg) and then gradually decreased. The polyP concentration was highest during mound formation (45nmol phosphate/mg protein); then, the level of long-chain polyPs decreased and that of short-chain polyPs increased during fruiting body and spore formation. Myxococcus xanthus expresses two exopolyphosphatases, Ppx1 and Ppx2, which mainly degrade short- and long-chain polyPs, respectively, both of which were highest in vegetative cells and were detected during starvation, which may account for the degradation of polyPs. Thus, polyPs synthesized by Ppk1 early in starvation-induced development could be degraded by exopolyphosphatases and may also be used as substrates by polyP:AMP phosphotransferases and polyphosphate/ATP-NAD kinases to generate ADP and NADP+, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call