Abstract
Atomic layer deposition (ALD) was used to control the stoichiometry of thin lithium aluminosilicate films, thereby enabling crystallization into the ion-conducting β-eucryptite LiAlSiO4 phase. The rapid thermal annealed ALD film developed a well-defined epitaxial relationship to the silicon substrate: β-LiAlSiO4 (12̅10)||Si (100) and β-LiAlSiO4 (101̅0)||Si (001). The extrapolated room temperature ionic conductivity was found to be 1.2 × 10-7 S/cm in the [12̅10] direction. Because of the unique 1-D channel along the c axis of β-LiAlSiO4, the epitaxial thin film has the potential to facilitate ionic transport if oriented with the c axis normal to the electrode surface, making it a promising electrolyte material for three-dimensional lithium-ion microbatteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.