Abstract

Abstract New quaternary niobium cluster chlorides corresponding to the general formula ATi[Nb6Cl18] (A = K, Rb, Cs, In, Tl) have been synthesized in sealed quartz tubes at 720 °C, starting from stoichiometric amounts of NbCl5, niobium metal, TiCl3, and ACl (A = K, Rb, Cs), or In or Tl metals. The structures of RbTi[Nb6Cl18] and CsTi[Nb6Cl18] were determined using single­ crystal X-ray diffraction. RbTi[Nb6Cl18] crystallizes in the rhombohedral crystal system, space group R3̄ (no. 148), Z = 3, with lattice parameters: a = 9.163(4), c = 25.014(14) Å (hexagonal setting). The structure refinement converged to R1 = 0.044 and wR2 = 0.058 for all data. In this structure, discrete [Nb6Cl18]4-cluster units are linked by Rb+ and Ti3+ cations, located in a 12-coordinated anticubeoctahedral and octahedral chloride coordination environment, respectively. In contrast, CsTi[Nb6Cl18] crystallizes in the trigonal crystal system, space group P3̄1c (no. 163), Z = 2. The lattice parameters were determined to be a = 9.1075(6), c = 17.0017(8) Å. The structure refinement gives the reliability factors R1 = 0.029 and wR2 = 0.063 for all data. The structure is built up of discrete octahedral [Nb6Cl18]4- cluster units, linked by Cs+ and Ti3+ cations which are located in a distorted hexagonal antiprismatic and octahedral chloride coordination environment, respectively. The structures of the compounds ATi[Nb6Cl18] (A = K, In, Tl) were found to be isotypic with RbTi[Nb6Cl18], and their unit cell parameters were refined using X-ray powder diffraction analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call