Abstract

The reaction of cobalt dichloride hexa-hydrate with pyridazine leads to the formation of crystals of the title compound, [CoCl2(C4H4N2)]n. This compound is isotypic to a number of compounds with other divalent metal ions. Its asymmetric unit consists of a Co2+ atom (site symmetry 2/m), a chloride ion (site symmetry m) and a pyridazine mol-ecule (all atoms with site symmetry m). The Co2+ cations are coordinated by four chloride anions and two pyridazine ligands, generating trans-CoN4Cl2 octa-hedra, and are linked into [010] chains by pairs of μ-1,1-bridging chloride anions and bridging pyridazine ligands. In the crystal structure, the pyridazine ligands of neighboring chains are stacked onto each other, indicating π-π inter-actions. Powder X-ray diffraction proves that a pure crystalline phase was obtained. Differential thermonalysis coupled to thermogravimetry (DTA-TG) reveal that decomposition is observed at about 710 K. Magnetic measurements indicate low-temperature metamagnetic behavior as already observed in a related compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call