Abstract

Abstract A series of six new single crystals of fully stoichiometric As3+-bearing Mo-oxides and partially W-substituted Mo-oxides with formula As m O(Mo1− x W x O3) p (m = 1, 2; p = 5, 7, 9, 10 and 11 and 0 ≤ x ≤ 0.6) was successfully grown using vapor-phase transport in vacuo. The crystal structures were determined using single-crystal X-ray diffraction data. All these compounds exhibit acentric orthorhombic symmetry with Z = 2, and belong to the so-called (n)-ITB (intergrowth tungsten bronzes) family, with n = 2, 3, 4 and 5. The six (n)-ITB phases have the following formulae: (2)-AsMo5O16 (Pm 2a), (2)-As2Mo10O31 (Pma 2), (3)-AsMo7O22 (Pmn 21), (3)-As(Mo5.53W1.47)O22 (Pmn 21), (4)-As(Mo4.33W4.67)O28 (Pm 2a) and (5)-As(W6.63Mo4.37)O34 (Pmn 21). Their structures consist of vertex-sharing MO6 octahedral units (with M either Mo or Mo/W) connected so as to form three-dimensional frameworks. Such frameworks consist of perovskite tungsten bronzes (PTB) type slabs, from 2- to 5-octahedra wide, intergrown with single hexagonal tungsten bronzes (HTB) type slabs, stacked up to form pseudo-hexagonal tunnels along the a-axis. As3+ and additional oxygen atoms are located in off-center positions inside the tunnels, forming As–O bonds with peculiar arrangements. In particular, we obtained the first examples of structures where, besides the usual AsO3E distorted pyramidal geometry, As3+ adopts AsO4E coordination with a seesaw configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call