Abstract

In this work, a cerium/tetraethylenepentamine dithiocarbamate complex was synthesized and evaluated for the corrosion inhibition capability on an AA2024-T3 Al alloy in a 3.5% NaCl medium. The synthesized compounds were characterized via spectroscopic techniques. The corrosion inhibition behaviour of the complex was elucidated by electrochemical measurements and surface analysis techniques. Based on electrochemical test results, the corrosion inhibition efficiency of the complex increases with the immersion time of aluminium alloy in the test solution. The corrosion inhibition reaches 96.80% when the aluminium is immersed in a 3.5% NaCl solution containing a corrosion inhibitor for 120 h. The potentiodynamic polarization test results show that the complex acts as a mixed-type corrosion inhibitor and the passive range is widened. The surface analysis methods reveal that the corrosion inhibition ability of the complex originated from the formation of a protective layer on the Al surface. This film is created from the physisorption and chemisorption of cerium ions and organic parts simultaneously released from the complex molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.