Abstract

The development of cost-effective, sustainable, eco-friendly and efficient compounds is a renovated science and a demanding assignment for today’s chemists and technology specialists. In this context, the anticorrosion effect of a new Schiff base hydrazone, namely (E)-2-(4-(2-(methyl(pyridin-2-yl)amino)ethoxy)benzylidiene)hydrazine-1-carboxamide (MPAH) against the mild steel (MS) surface in 1.0 M HCl has been analyzed utilizing experimental methods, thermodynamic characterizations, and computational studies. MPAH has proven to be an effective inhibitor in 1.0 M HCl solution. Its inhibition performance improved by raising the concentration of the compound to an optimal concentration of 5 × 10−3 M, and 97% efficiency was achieved at 303 K. Inhibitor adsorption on the MS has been explicated with both physical and chemical interactions. The adsorption was in accordance with the isotherm of Langmuir. The impact of MPAH on the surface of MS had been confirmed utilizing SEM/EDX, electrochemical impedance spectroscopy (EIS), gravimetric measurements (WL), and potentiodynamic polarization (PDP). The adsorption of the studied compound on the MS surface has also been investigated by DFT and the molecular dynamics (MD) simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.