Abstract

The syntheses of eight sulfonium compounds with structures related to the naturally occurring pyrrolizidine alkaloid, australine, in which the bridgehead nitrogen atom is replaced by a sulfonium ion, are described. The synthetic strategy relies on the intramolecular attack of a cyclic thioether across a terminal double bond in the presence of a suitable electrophile. We postulate that these compounds, having a permanent positive charge on the sulfur atom, will mimic the highly unstable oxacarbenium ion transition state in a glycosidase-catalyzed hydrolysis reaction. The conformational preferences of these compounds, based on analysis of 1H-1H vicinal coupling constants and 1D-NOESY data, are attributed to both steric and electrostatic interactions. These compounds will be used in the study of structure-activity relationships with glycosidase enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.