Abstract
Dipolar cylcoadditions with azides using a series of o-nitrophenylethynes and disubstituted alkynes were studied experimentally and computationally. Density functional theory computations reveal the steric and electronic parameters that control the regioselectivity of these cycloadditions. Several new substrates were predicted that would either give enhanced regiocontrol or invert the regiochemical preference. Experimentally, the alkynes were screened in the [3 + 2] cycloaddition with benzyl azide. Of the 11 alkynes screened experimentally, the acetylenes containing halogen substitution directly on the alkyne provided the highest levels of regioselectivity. These haloalkynes were also shown to tolerate variation of the azide moiety with continued good levels of regioselectivity in most cases. Diverse functional groups can be incorporated through the cycloaddition process and their subsequent orthogonal modification was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.