Abstract

A valence isoelectronic and isostructural series of charged bis(N-heterocyclic carbene) pincer complexes [M(bC^N^bC)X]OTf and [M(bC^N^bC)CH3CN](OTf)2 (where M = Ni, Pd, and Pt, bC^N^bC = 1,1'-(pyridine-2,6-diylbis(methylene))bis(3-butylbenzo[d]imidazol-2-ylidene)) were synthesized, characterized, modelled by density functional theory calculations, and compared for their electrochemical properties and reactivity with CO2. Although the electrochemical response of each complex is altered by the presence of CO2, controlled potential electrolysis experiments demonstrated the superior ability of [Pd] to reduce CO2 to CO in faradaic efficiencies up to 58% in the presence of trifluoroacetic acid, compared to [Pt] and [Ni] which showed only marginal production of CO, giving the trend [Pd] ≫ [Pt] > [Ni] for this series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.