Abstract

AbstractNovel biodegradable polyesters, such as poly(ethylene sebacate) (PESeb), poly(propylene sebacate) (PPSeb), and poly(butylene sebacate) (PBSeb), were synthesized and studied with respect to melting behavior, crystallization kinetics, and enzymatic hydrolysis. PESeb and PPSeb showed multiple melting behavior. Wide angle X‐ray diffractometry measurements at various temperatures, standard, step‐scan, and high‐rate differential scanning calorimetry methods were applied to elucidate the appearance of multiple endotherms in heating scans, which was interpreted in the context of partial melting‐recrystallization and final melting. PBSeb did not show any multiple melting behavior but only a weak tendency for recrystallization on heating. The melting temperatures of PESeb, PPSeb, and PBSeb were measured equal to 78, 57, and 71 °C, respectively. The equilibrium melting points were estimated to be Tm° = 90.2, 69.9, and 77.4 °C for PESeb, PPSeb, and PBSeb, while the corresponding enthalpy of fusion values were found to be ΔHf = 170 ± 10, 140 ± 10, and 155 ± 10 J/g, respectively. The polyesters showed fast crystallization rates under both isothermal and nonisothermal conditions. Crystallization kinetics was thoroughly investigated using macrokinetic models and isoconversional analysis. Enzymatic hydrolysis rate in the presence of lipases Rhizopus delemar and Pseudomonas cepacia was found to be fast for PPSeb, whereas PESeb and PBSeb showed slow rates and comparable with those of PCL. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 672–686, 2010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call