Abstract

AbstractCore‐cleavable star polymers were synthesized by the coupling of living anionic poly(alkyl methacrylate) arms with either dicumyl alcohol dimethacrylate (DCDMA) or 2,5‐dimethyl‐2,5‐hexanediol dimethacrylate (DHDMA). This synthetic methodology led to the formation of star polymers that exhibited high molecular weights and relatively narrow molecular weight distributions. The labile tertiary alkyl esters in the DCDMA and DHDMA star polymer cores were readily hydrolyzed under acidic conditions. High‐molecular‐weight star polymer cleavage led to well‐defined arm polymers with lower molecular weights. Hydrolysis was confirmed via 1H NMR spectroscopy and gel permeation chromatography. Thermogravimetric analysis (TGA) of the star polymers demonstrated that the DCDMA and DHDMA star polymer cores also thermally degraded in the absence of acid catalysts at 185 and 220 °C, respectively, and the core‐cleavage temperatures were independent of the arm polymer composition. The difference in the core‐degradation temperatures was attributed to the increased reactivity of the DCDMA‐derived cores. TGA/mass spectrometry detected the evolution of the diene byproduct of the core degradation and confirmed the proposed degradation mechanism. The DCDMA monomer exhibited a higher degradation rate than DHDMA under identical reaction conditions because of the additional resonance stabilization of the liberated byproduct, which made it a more responsive cleavable coupling monomer than DHDMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3083–3093, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call