Abstract

Several dihydridoborate group 7 metal complexes have been synthesized and their structural aspects have been described from various N,S-, N,N-, and N,O-chelated borate species, such as Na[(H3B)mp] (mp = 2-mercaptopyridyl), Na[(H3B)amt] (amt = 2-amino-5-mercapto-1,3,4-thiadiazolyl), Na[(H3B)hp] (hp = 2-hydroxypyridyl), Na[(H2B)bap] (bap = bis(2-aminopyridyl)), and Na[(H2B)bdap] (bdap = bis(2,6-diaminopyridyl)). Room temperature photolysis of [M2(CO)10] (M = Mn or Re) with these borate species afforded dihydridoborate complexes [(CO)3M(μ-H)2BHL] 1-6 (1, M = Mn, L = mp; 2, M = Re, L = mp; 3, M = Mn, L = amt; 4, M = Mn, L = hp; 5, M = Mn, L = ap; 6, M = Mn, L = dap, ap = 2-aminopyridyl, dap = 2,6-diaminopyridyl). In complexes 1-3, the corresponding (H2BHL) units are coordinated to the metal centers through the (κ3-H,H,S) mode. However, in complexes 4 and 5 (or 6), the connection is via (κ3-H,H,O) and (κ3-H,H,N) modes of coordination, respectively. Complexes 1 and 5 underwent hydroboration reactions with terminal alkynes that yielded trans-hydroborated species [Mn(CO)3(μ-H)2(NC5H4E)B(PhC═CH2)] (7, E = S; 8, E = NH). Density functional theory (DFT) calculations have been carried out to investigate the electronic structures of these dihydridoborate species as well as the nature of bonding in them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call